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Effects of inertia in forced corner flows 
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When viscous fluid is contained in the corner between two planes intersecting at  an 
angle a, a flow may be ‘forced’ either by relative motion of the two planes keeping a 
constant (the ‘paint-scraper ’ problem- Taylor 1960) or by relative rotation of the 
planes about their line of intersection (the hinged-plate problem - Moffatt 1964). In  
either case, a similarity solution is available describing the flow sufficiently near the 
corner, where inertia forces are negligible. In this paper, we investigate the effects of 
inertia forces, by constructing regular perturbation series for the stream function, of 
which the leading term is the known similarity solution. The first-order inertial effect 
is obtained analytically, and, for the Taylor problem with a = Qn, 25 terms of the 
perturbation series for the wall stress are generated numerically. Analysis of the 
coefficients suggests that the radius of convergence of the series is given by r 1 U I /v w 9.1, 
where r is distance from the corner, U is the relative speed of the planes, and v is the 
kinematic viscosity of the fluid. For the hinged-plate problem, discussed in $5, the 
unsteadiness of the flow contributes to an inertial effect which is explicitly incorpo- 
rated in the analysis. For both problems, streamline plots are presented which indicate 
the first influence of inertia forces at distances from the corner at  which these become 
significant. 

1. The corner problem of Taylor (1960) 
When incompressible viscous fluid is contained in the corner between two planes 

8 = 0, a (figure l) ,  and when one of the planes (8 = 0) is moved parallel to itself with 
steady velocity U ,  the flow that is generated is dominated by viscous forces sufficiently 
near to the corner. In this region, the stream function $rs(r,8),  which satisfies the 
biharmonic equation, is given by the similarity solution (Taylor 1960, 1962) 

where 
$rs = rUfi(0) = rU(Bsin8+CBcosB+DBsin8), (1 .1)  

- a2 sin2 a a-sina cosa 
B =  C =  D =  

a2 - sin2 a ’ a2 - sin2 a’ a2 - sin2 a 

The streamlines $rs = constant are shown (for a = +n) by the solid curves of figure 1 ; 
the flow is, in this approximation, reversible, so that, if U is replaced by - U ,  the 
arrows on the streamlines are reversed, but the streamline pattern is unaffected. 

t Present address: Bath College of Higher Education, Newton Park, Bath BA2 9BN. 
I1 F L M  I12 
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FIGURE 1. Streamlines for the Taylor corner problem with oc = in; the solid curves are the 
streamlines of the Stokes flow (= $Jv) = constant; the dashed lines are the streamlines 

+ $, = constant, including the first inertial correction (obtained analytically). 
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The above solution breaks down at  a distance of order v/\ UI from the origin (where v 
is the kinematic viscosity of the fluid) due to the increasing importance of inertia as 
r increases.? In order to analyse inertial effects, we consider the exact equation for the 
stream function $( r ,  O), viz 

VV4$ = -- 1 a($, V") 
r a(r,O) ' 

and we seek to solve this, subject to the boundary conditions 

(1.4) 
$ = 0, a$lae = - r U  on 8 = 0, 

$ =  0, a@/aO= 0 on 0 =  a. 

We may anticipate the asymptotic behaviour 

$ - $Jr,t?) as r --f 0. 

The natural procedure is simply to seek the solution in the form of a regular pertur- 

withf,(O) given by (1.1). Substitution in (1.3) yields a sequence of equations 

and this in turn yields a sequence of linear inhomogeneous equations for the fn(0) ,  viz 

(n = 2 , 3  ,... ). (1.8) 

Since v $ ~  already satisfies the boundary conditions (1.4), equations (1.8) are to be 
solved subject to the homogeneous boundary conditions 

f n n  = f ' = O  on O=O,a ( n = 2 , 3  ,... ). (1.9) 

2. Possible ' eigenfunction' contributions 
Before carrying out this procedure, there is a possible complication that needs 

comment. A t  the lowest order in the expansion (1.6), the solution eS = v $ ~  is not 
unique (regarded as a solution of the biharmonic equation satisfying the boundary 
conditions (1.4)) but may be supplemented by the general solution $c(r ,8)  of the 
homogeneous problem 

V4$c = 0,  $c = a$JaO = 0 on 8 = 0,a. (2.1) 

t It also breaks down in an immediate vicinity of the corner, since it implies an (unphysical) 
pressure singularity p = O ( T - ~ )  ; in practice, this means that there is always a small leakage of 
fluid through a small gap between the planes - an important practical consideration, which is 
not, however, treated in this paper. 

1 Note added in proof. Dr E. Erdogan has drawn our attention to the interesting paper of 
lnouye (1973) in which the particular case a = +.rr has been studied both by a boundary-layer 
technique (which seems to be applicable only when U > O )  and by the expansion technique 
advocated here. Inouye obtained the first correction but he did not attempt to obtain 
subsequent terms or to establish the radius of convergence of the series. 

11-2 
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FIGURE 2. Exponents of dominant eigenfunctions as functions of u ;  see the inequalities 
(2.6) for the Taylor problem and (5 .5 )  for the hinged-plate problem. 

This has the well-known form (Moffatt 1964, Lugt & Schwiderski 1965, Weinbaum 
1968, Liu & Joseph 1977) 

OD 

$c(r, 6 )  = Re C A,rXngn(e), (2.2) 
n=1 

where the A, are the roots (with positive real part) of 
sin ( A ,  - 1)  a = ( - 1)n (A, - 1) sin a, 

0 < ReA, < ReA, < ... 
ordered so that 

(complex 
given by 

solutions occurring in complex conjugate pairs). The functions 

(n odd) 

(n even) 
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and the (complex) constants A ,  are determined in (in principle) by conditions far from 
the corner. The apparent freedom here simply reflects the fact that additional ‘ con- 
ditions at infinity ’ must be imposed on $ in order to make the solution of the problem 
(1.3), (1.4) unique, even in the inertia-free limit. It is clear from (2.5) that odd/even 
values of n correspond to flows that are antisymmetric/symmetric about 8 = ia. The 
computed variation of Re A, and Re A, with a is shown in figure 2. 

The solution (2.2) should clearly participate in nonlinear (inertial) interactions, 
leading to additional terms in the general solution of the problem (1.3), (1.4). However, 
the dominant behaviour for r I U ( / v  < 1 is given by the first N terms of the expansion 
(1.6) where 

N < ReA,(a) < N + 1, (2.6) 

subsequent terms being dominated by eigenfunction contributions. For example 
(from figure 2) when a = in, in, in, we have N = 3, 6, 11 respectively. For small 
a, N becomes large, and the solution becomes progressively less sensitive to eigen- 
function contributions. For all values of a in the range 0 < a < n, the first inertial 
correction, given by q?, in (1.6), dominates over any eigenfunction contribution, and 
may therefore be regarded as having absolute significance, independent of conditions 
‘at infinity’. (The limiting case a -+ n is special, in that A,(n) = 2; this case will be 
treated separately below.) 

3. The first inertial correction $,(r, 8)  
With n = 2, (1.8) becomes 

where f, is given by (1.1). Substitution gives 

Fl(8) = (2BC+C2-02)sin28- 2(B+C)Dcos28+4CD 8sin28+2(C2-02)8~0~28, 

(3.2) 

and the solution of (3.1) satisfying (1.9) (with n = 2) may then be found by elementary 
techniques in the form 

f2(@ = E8 cos 28 + F8 sin 28 + 68, cos 28 + H e 2  sin 28 

+ P+ Q8+ R cos 28+ Ssin 28, (3.3) 

where E ,  F ,  . . . , S are constants, depending only on a, whose values are obtained in the 
Appendix. 

The streamlines 9, + $2 = constant (for a = Qn) are shown by the dashed curves in 
figure 1 a ( U  < 0) and 1 b ( U  > 0); in the former case, inertia tends t,o compress the 
streamlines towards the fixed wall 8 = a, i.e. we see the beginnings of a wall-jet type of 
flow on 8 = a, whereas in the latter case the flow has a sink-like character in the 
region an 5 8s in. 
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The case a = TI 

As noted above, this case needs special treatment, and indeed this is now evident 
also from the solution (3 .3 ) ,  in which (see appendix) the constants P and R become 
infinite as a-tn; in fact, writing a = n - F ,  the asymptotic form of (3 .3 )  is 

C .  Hancock, E .  Lewis and H .  K .  Mojfatt 

1 38( 1 - cos 28)  (8- an) 8sin 28 
326 32n2 + O ( € ) .  (3 .4 )  f2(@ -- (1-cos28)- 

+ 16n2 

The singular behaviour that occurs when E -+ 0 can be resolved (cf. Moffatt & Duffy 
1980) by choosing A ,  (in (2.2)) so that 

(3 .5 )  

is finite. Now, for F < 1, A, - 2(1 +e/n )  from (2 .3) ,  and, from (2.5), 

2€e  
gl(8) (COSB- 1)--sin28+O(s2). n (3 .6 )  

Hence we require A ,  = - U2/32ev2, and the appropriate inertial correction when 
a = 7~ is, from ( 3 4 ,  

[ ( 2  In r - 38)  (1 - cos 28)  + 2/40 - n) sin 281. (3 .7 )  

4. Numerical determination of higher terms in the expansion (1.6) 
It is of some interest to investigate the rate of convergence of the expansion (1.6),  

since this is the ‘driven’ ingredient of the flow which is present irrespective of remote 
conditions. We have integrated the equations for the particular case a = &n, for 
n = 3 , 4 ,  . . . , lo ,  using a standard finite-difference procedure?; the number of steps No 
in the 8 direction was variable, the maximum value used being 280. The partial sums 

are shown in table 1, for 8 = an and for various values of p = r U / v  and of N .  The 
results suggest a radius of convergence pc somewhat less than 10. The streamlines 
Y3 = constant are shown in figure 3, and they are close to the streamlines Y, = 
constant for lpl c 5,  where the convergence appears to be strong. 

x 5 6 8 10 

1 - 1.080 - 1.296 - 1.728 - 2.160 
2 - 1.283 - 1.588 - 2.247 - 2.97 1 
5 - 1’397 - 1.808 - 2.891 - 4.506 

10 - 1.399 - 1.809 - 2.786 - 3.357 

TABLE 1. Values of @ ~ ( p ,  8 = an), where p = r U / v .  

t Full computational details may be found in Hancock (1981). 
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FIGURE 3. Streamlines obtained from the numerical solution for the Taylor 
problem, with CI = in; -----?PI; - - - - Y2; .-.-.-.- Y8 (see (4.1)j. 



322 C .  Hancock, E.  Lewis and H .  K .  Moflatt 

Ne 
40 
80 

120 
160 
200 
240 
280 
a, 

a1 

2.140 934 88 
2.14092432 
2.14092333 
2.14092309 
2-14092300 
2.14092297 
2.140922 95 
2.140922 9.. . 

a2 

-0.0561335 
- 0.057 3850 
- 0.057 854 7 
- 0.058099 4 
- 0.058 249 4 
- 0.058 3508 
- 0.058 423 8 
-0.0588739 

TABLE 2. Dependence of the computed coefficients a, and a2 on number of grid 
points No, the values for No = co being obtained analytically. 

n 

1 
2 
3 
4 
5 
0 
7 
8 
9 

10 
11 
12 

an 
+2.1409229 E + O O  
- 5.887 3180 E - 02 
-6.6765159 E-04  
$9'7142473 E-05  
+ 5.487 732 9 E - 05 
+ 5.391 367 9 E - 06 
- 9.766327 9 E - 07 
- 1.3054515 E-07 
+9.7903752 E-09  
+ 1.7532554 E - 09 
-2'6119257E-11 
- 1.840206 7 E - 11 

12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

TABLE 3. Extrapolated values of a,,. 

an 
-9.7262179E-13 
+ 1.424541 7 E - 13 
+ 2.2946768 E - 14 
-3-2082762E-15 
-3'2095151 E-16  
- 1.3783152 E - 17 
+ 3.227 746 1 E - 18 
+3.2717161 E-19 
- 2.034486 1 E - 20 
-4.7292192 E-21  
- 3.742547 6 E - 23 
+ 5.005 898 7 E - 23 
+ 3.559 921 0 E - 24 

The wall stress on 0 = 0 is given by 

where a, = f:(O). The analytical results of 9 3 give, with a = in, 

4n 
n2-4 

a, = - = 2-1409229 ..., 

n(4n4- 8n2- 352) 
64(n2 - 4) a2 = = - 0.0588739.. ., 

(4.3) 

(4.4) 

and these are compared in table 2 with numerical results for different values of No. 
Using the Aitken S2-extrapolation procedure, the exact values (No -+ 00) of each a, 
were estimated from similar sequences. This calculation required less computer 
storage, and it was possible to find the a, for n = 3,4, . . . ,25;  these values are shown 
in table 3. 

We are greatly indebted to Professor Milton Van Dyke who has suggested the means 
by which the singularities of the function Xa,P may be located. Firstly, the pattern 
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N 

3 
4 
5 
6 
7 
8 
9 

P C  

5.455 
8.447 
8.654 
8.840 
9.170 
9.092 
9.094 

P l n  
0.3556 
0.4153 
0.3874 
0.4022 
0.4119 
0.4117 
0.4118 

TABLE 4. Poles z, = pce*j8 of the “IN] Pad6 approximants for N = 1, 2, ..., 9. (For N = 10, 
11, the Pad6 approximant is degenerate due to the near-coincidence of a zero of the numerator 
with z = z,; for N = 12, the pole z = z, reappears a t  z, M 9.1e*041ni. ) 

of signs of the coefficients settles down to ( + + - - - ). A model function exhibiting 
a similar pattern is 

m -cosp+z 
= - z zncOs(n+l)p, (4.5) 1-2zcosp+z2 n=O 

with /3 = Qn; this function has simple poles at z = e+tij,  and this suggests that the series 
Xun zn may have singularities near arg z = -t. in. 

Secondly, the dominant singularities may be located using Pad6 approximants. 
Table 4 shows the poles z, = p, e*@ of the “ I N ]  Pad6 approximants for N = 3,4,  . . . , 9 
(Van Dyke, private communication). The position rapidly stabilizes to z, M 9. le*041ni; 

as expected, the angle 0.4ln is near to the value in suggested by the pattern of signs. 
The inference is that the series (4.2) (and so presumably the series (1.6)) has radius of 
convergence 

pc M 9.1. (4.6) 

5. The hinged-plate problem 
Consider now the related problem sketched in figure 4: the plates 6 = 5 $a are 

hinged at  0, and rotate about 0 with angular velocities w (so that da ld t  = 2 w ) .  We 
suppose for simplicity that w is constant; even so, the resulting flow is necessarily 
unsteady due to the changing geometry; in the Stokes approximation, however, the 
stream function $Jr, 6) is instantaneously determined, and the similarity solution 
analogous to (1 .1)  is (Moffatt 1964) 

sin 26 - 28 cos a 
sin a -a cos a ‘ 

$s = &or2fi(O, a) = - gwr2 

Figure 4 shows the streamlines $s = constant (solid curves) for a = in. 
Two simple properties of this stream function are worth noting in the present 

c0ntext.f Firstly, when a = in, V2$s = 0;  for this particular angle, it  might be thought 
that (5.1) provides an exact (irrotational) solution of the Navier-Stokes equations; 
however, there is an inertial correction due to unsteadiness (see (5.11) below). Secondly, 
when sin a = a cos a, i.e. when a x 257”, $s is singular because (Moffatt &, Duffy 1980) 

-f As for the Taylor problem, there is a pressure singularity ( p  N In T )  at T = 0, which we 
make no attempt to resolve in this paper. 



324 C .  Hancock, E .  Lewis and H .  K .  Moflatt 

FIGURE 4. The hinged plate problem; streamlines for a = $ A ;  the solid curves are the stream- 
lines for the Stokes flow ( = $Jv) = constant (equation (5.1)); the dashed lines include the 
first-order inertial correction $2. (a)  w < 0; ( 6 )  o > 0. 

an eigenfunction solution rAf (8) with h = 2 exists for this critical value of a; the 
singularity can be resolved only when the eigenfunction solution is included, and this 
leads to an r21nr behaviour. The same problem arises in a more acute form when 
inertial corrections are considered -see (5.8) below. 

For general values of a, inertia forces associated both with nonlinearity and with 
unsteadiness are important. We require to find a stream function g+ satisfying 
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and subject to the boundary conditions 

_ -  ;; - 0 on 

The series solution analogous to (1.6) has the form 

(5.3) 

(5.4) 

Again, eigenfunction contributions can also intervene in the general solution; here we 
are concerned only with flows symmetric about 6 = 0 (on the assumption that the 
remote conditions introduce no asymmetry), i.e. with even values of n in (2.3); the 
first N terms of (5.4) dominate over all eigenfunction contributions where now 

2N < Reh, 6 2(N+ 1). ( 5 . 5 )  

For a 2 145", the inertial correction $rp is always dominated by the eigenfunction 
rAag2(8), i.e. for such large angles inertial effects are necessarily associated with the 
'remote ' conditions. For a 5 145" however, at least the term $, is always physically 
significant, and we therefore focus attention on this leading-order inertial effect in 
what follows. 

Substitution of (5.4) into (5.2) leads to a succession of linear equations for the 
f n (B ,  a ) :  the equation for f 2  (using the expression (5.1) fortl and the fact that 

reduces to 
afl/at = 2 w a f ~ a a )  

and the solution, subject to the conditions 

is 
(5.7) f ,  = af,/a8 = 0 on 8= k +a 

B sin 28 + D sin 48 - 4 sin3 a( 28 cos 28 cos a - 38) 
24 sin3 a(sin a - a cos a), f 2  = 7 

where 

(5.9) 

Note that a new singularity appears when a = n; this singularity can be resolved by 
including appropriate eigenfunction contributions (as in $ 3  above), the ultimate result 
being, for a = n, 

B = sin 2a(4 + cos 2a) -a( 1 + 8 cos 2a + cos2 2a), 

D =  5acosa-sina(4+cosa). 

(1 + cos 26) (5 sin 281n r + 8(5 cos 28 - 4)). (5.10) 

This result is, however, of dubious significance since, as noted above, Reh, < 4 for 
a 2 145"; in fact, for a = n, A, = 3, and the correspondingcontributionto$,if present, 
will certainly dominate over (5.10) near r = 0. 

When a = $71 (in which case V2$, = 0 as remarked above) the inertial correction 
simplifies to 

$, = 8(;3;;) (nsin20-sin40-48). (5.11) 
1 wr2 2 
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Figure 4 shows the streamlines of $, + @, (for a = in) as dashed curves for w < 0 
(figure 4a) and w > 0 (figure 4 b ) .  In  the former case, a jet-type flow tends to develop 
as the fluid is squeezed out of the gap; in the latter case, inertia forces tend to spread 
the flow more evenly over the range of 8 (relative to the Stokes flow). 

It would of course be possible to obtain subsequent terms of the series (5.4) 
numerically (as done above for the Taylor problem). The limited additional infor- 
mation that this would provide, however, makes this an exercise of doubtful value. 
A more interesting problem might be to allow for unsteadiness in o, and hence for 
example to study the development of the flow due to angular acceleration of the plates 
from a state of rest. We leave this problem to a future investigation. 

We are grateful to a referee of a previous version of this paper, whose penetrating 
comments led to significant improvements; to Professor Milton Van Dyke for his 
suggestions concerning the use of Pad6 approximants; to Professor S. N. Curle for 
discussion on the topic of series improvement; and to the Science Research Council 
for supporting the work of one of us (C. H.) by a Research Studentship. 

Appendix 
In  equation (3 .2 ) ,  let 

K ,  = 2BC+C'-D', 

K ,  = 4CD, 

K 2  = - 2 ( B + C ) D ,  

K4 = 2(C2- D2), 

where B ,  C, D, are given by (1.2). A particular integral of ( 3 . 1 )  is then 

f P )  = E8 cos 28 + PO sin 28 + GO2 cos 20 + He2 sin 28, (A 2) 

where, as is easily verified, 

32E = 2K,- 3K4, 

1BC = K,, 

32P = - 2K,- 3K,, 

16H = -K4. 

The complementary function is 

f g) = P -k QB + R cos 28 + S sin 28, 

and, with fi = f LP) + f p), the boundary conditions (1.9) give 

P + R  = 0, 

Q + 2 S + E  = 0, 

P + &a+ R cos 2a + Ssin 2a = - X ( a ) ,  
Q - 2R sin 2a + 2s cos 2a = - X' (a ) ,  
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where X(a) = Ea cos a + Fa sin a + Ga2 cos a + Ha2 sin a and X’(a) is the derivative 
of X, regarding E ,  F, G ,  H as constants. Solving (A 5), we find 

2Ea sin2 a- 2X(a) sin2 a - ( E  -X’(a)) (a- sin a cos a) 
4 sin a(sin a - a cos a) 

2X(a) cos a - X’(a) sin a - E sin a 
2(sin a - a cos a) & =  , 

(2Ea cos a - 2X(a) cos 01 - E sin a + X’(a) sin a) sin2 a s= 
4(sin a - a cos a) 

P = - R =  7 

Hence f,(S, a) is completely determined. 
For the particular case a = in, the constants E, F ,  ..., R, S take the values 

- 8(n2+ 12) 
- 1 6n(n2 + 6) 
64n 
16(n2 - 4) 
n(n4 + 14n2 - 24) 
- 4n2(n2+ 8) 
- n(n4 + 14n2 - 24 
2(n2+6)(n2+4) 

The streamline plots in figure 1 are based on this solution. 
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